Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(perfectp, 0) → false
app(perfectp, app(s, x)) → app(app(app(app(f, x), app(s, 0)), app(s, x)), app(s, x))
app(app(app(app(f, 0), y), 0), u) → true
app(app(app(app(f, 0), y), app(s, z)), u) → false
app(app(app(app(f, app(s, x)), 0), z), u) → app(app(app(app(f, x), u), app(app(minus, z), app(s, x))), u)
app(app(app(app(f, app(s, x)), app(s, y)), z), u) → app(app(app(if, app(app(le, x), y)), app(app(app(app(f, app(s, x)), app(app(minus, y), x)), z), u)), app(app(app(app(f, x), u), z), u))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(perfectp, 0) → false
app(perfectp, app(s, x)) → app(app(app(app(f, x), app(s, 0)), app(s, x)), app(s, x))
app(app(app(app(f, 0), y), 0), u) → true
app(app(app(app(f, 0), y), app(s, z)), u) → false
app(app(app(app(f, app(s, x)), 0), z), u) → app(app(app(app(f, x), u), app(app(minus, z), app(s, x))), u)
app(app(app(app(f, app(s, x)), app(s, y)), z), u) → app(app(app(if, app(app(le, x), y)), app(app(app(app(f, app(s, x)), app(app(minus, y), x)), z), u)), app(app(app(app(f, x), u), z), u))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(filter2, app(fun, x)), fun)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(perfectp, app(s, x)) → APP(app(app(app(f, x), app(s, 0)), app(s, x)), app(s, x))
APP(app(app(app(f, app(s, x)), 0), z), u) → APP(app(minus, z), app(s, x))
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(app(app(f, x), u), z), u)
APP(app(app(app(f, app(s, x)), 0), z), u) → APP(minus, z)
APP(perfectp, app(s, x)) → APP(app(f, x), app(s, 0))
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(fun, x)), fun), x), xs)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(f, x), u)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(if, app(app(le, x), y)), app(app(app(app(f, app(s, x)), app(app(minus, y), x)), z), u))
APP(app(app(app(f, app(s, x)), 0), z), u) → APP(app(app(f, x), u), app(app(minus, z), app(s, x)))
APP(app(map, fun), app(app(cons, x), xs)) → APP(app(map, fun), xs)
APP(perfectp, app(s, x)) → APP(f, x)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(f, app(s, x)), app(app(minus, y), x))
APP(perfectp, app(s, x)) → APP(app(app(f, x), app(s, 0)), app(s, x))
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(le, x)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(le, x), y)
APP(app(app(app(f, app(s, x)), 0), z), u) → APP(app(f, x), u)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(minus, y)
APP(app(app(app(filter2, false), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(f, x)
APP(app(app(app(filter2, false), fun), x), xs) → APP(filter, fun)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(if, app(app(le, x), y))
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(app(filter2, app(fun, x)), fun), x)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(app(app(f, app(s, x)), app(app(minus, y), x)), z), u)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(app(f, app(s, x)), app(app(minus, y), x)), z)
APP(perfectp, app(s, x)) → APP(s, 0)
APP(app(map, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(app(app(filter2, true), fun), x), xs) → APP(cons, x)
APP(app(app(app(f, app(s, x)), 0), z), u) → APP(app(app(app(f, x), u), app(app(minus, z), app(s, x))), u)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(filter2, app(fun, x))
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(app(if, app(app(le, x), y)), app(app(app(app(f, app(s, x)), app(app(minus, y), x)), z), u)), app(app(app(app(f, x), u), z), u))
APP(app(map, fun), app(app(cons, x), xs)) → APP(cons, app(fun, x))
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(minus, y), x)
APP(app(app(app(filter2, true), fun), x), xs) → APP(filter, fun)
APP(app(app(app(f, app(s, x)), 0), z), u) → APP(f, x)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(app(f, x), u), z)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(cons, x), app(app(filter, fun), xs))
APP(app(map, fun), app(app(cons, x), xs)) → APP(app(cons, app(fun, x)), app(app(map, fun), xs))

The TRS R consists of the following rules:

app(perfectp, 0) → false
app(perfectp, app(s, x)) → app(app(app(app(f, x), app(s, 0)), app(s, x)), app(s, x))
app(app(app(app(f, 0), y), 0), u) → true
app(app(app(app(f, 0), y), app(s, z)), u) → false
app(app(app(app(f, app(s, x)), 0), z), u) → app(app(app(app(f, x), u), app(app(minus, z), app(s, x))), u)
app(app(app(app(f, app(s, x)), app(s, y)), z), u) → app(app(app(if, app(app(le, x), y)), app(app(app(app(f, app(s, x)), app(app(minus, y), x)), z), u)), app(app(app(app(f, x), u), z), u))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(filter2, app(fun, x)), fun)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(perfectp, app(s, x)) → APP(app(app(app(f, x), app(s, 0)), app(s, x)), app(s, x))
APP(app(app(app(f, app(s, x)), 0), z), u) → APP(app(minus, z), app(s, x))
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(app(app(f, x), u), z), u)
APP(app(app(app(f, app(s, x)), 0), z), u) → APP(minus, z)
APP(perfectp, app(s, x)) → APP(app(f, x), app(s, 0))
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(fun, x)), fun), x), xs)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(f, x), u)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(if, app(app(le, x), y)), app(app(app(app(f, app(s, x)), app(app(minus, y), x)), z), u))
APP(app(app(app(f, app(s, x)), 0), z), u) → APP(app(app(f, x), u), app(app(minus, z), app(s, x)))
APP(app(map, fun), app(app(cons, x), xs)) → APP(app(map, fun), xs)
APP(perfectp, app(s, x)) → APP(f, x)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(f, app(s, x)), app(app(minus, y), x))
APP(perfectp, app(s, x)) → APP(app(app(f, x), app(s, 0)), app(s, x))
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(le, x)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(le, x), y)
APP(app(app(app(f, app(s, x)), 0), z), u) → APP(app(f, x), u)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(minus, y)
APP(app(app(app(filter2, false), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(f, x)
APP(app(app(app(filter2, false), fun), x), xs) → APP(filter, fun)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(if, app(app(le, x), y))
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(app(filter2, app(fun, x)), fun), x)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(app(app(f, app(s, x)), app(app(minus, y), x)), z), u)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(app(f, app(s, x)), app(app(minus, y), x)), z)
APP(perfectp, app(s, x)) → APP(s, 0)
APP(app(map, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(app(app(filter2, true), fun), x), xs) → APP(cons, x)
APP(app(app(app(f, app(s, x)), 0), z), u) → APP(app(app(app(f, x), u), app(app(minus, z), app(s, x))), u)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(filter2, app(fun, x))
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(app(if, app(app(le, x), y)), app(app(app(app(f, app(s, x)), app(app(minus, y), x)), z), u)), app(app(app(app(f, x), u), z), u))
APP(app(map, fun), app(app(cons, x), xs)) → APP(cons, app(fun, x))
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(minus, y), x)
APP(app(app(app(filter2, true), fun), x), xs) → APP(filter, fun)
APP(app(app(app(f, app(s, x)), 0), z), u) → APP(f, x)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(app(f, x), u), z)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(cons, x), app(app(filter, fun), xs))
APP(app(map, fun), app(app(cons, x), xs)) → APP(app(cons, app(fun, x)), app(app(map, fun), xs))

The TRS R consists of the following rules:

app(perfectp, 0) → false
app(perfectp, app(s, x)) → app(app(app(app(f, x), app(s, 0)), app(s, x)), app(s, x))
app(app(app(app(f, 0), y), 0), u) → true
app(app(app(app(f, 0), y), app(s, z)), u) → false
app(app(app(app(f, app(s, x)), 0), z), u) → app(app(app(app(f, x), u), app(app(minus, z), app(s, x))), u)
app(app(app(app(f, app(s, x)), app(s, y)), z), u) → app(app(app(if, app(app(le, x), y)), app(app(app(app(f, app(s, x)), app(app(minus, y), x)), z), u)), app(app(app(app(f, x), u), z), u))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 32 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(f, app(s, x)), 0), z), u) → APP(app(app(app(f, x), u), app(app(minus, z), app(s, x))), u)
APP(app(app(app(f, app(s, x)), app(s, y)), z), u) → APP(app(app(app(f, x), u), z), u)

The TRS R consists of the following rules:

app(perfectp, 0) → false
app(perfectp, app(s, x)) → app(app(app(app(f, x), app(s, 0)), app(s, x)), app(s, x))
app(app(app(app(f, 0), y), 0), u) → true
app(app(app(app(f, 0), y), app(s, z)), u) → false
app(app(app(app(f, app(s, x)), 0), z), u) → app(app(app(app(f, x), u), app(app(minus, z), app(s, x))), u)
app(app(app(app(f, app(s, x)), app(s, y)), z), u) → app(app(app(if, app(app(le, x), y)), app(app(app(app(f, app(s, x)), app(app(minus, y), x)), z), u)), app(app(app(app(f, x), u), z), u))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(filter, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(app(app(filter2, false), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(fun, x)), fun), x), xs)
APP(app(map, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(map, fun), app(app(cons, x), xs)) → APP(app(map, fun), xs)

The TRS R consists of the following rules:

app(perfectp, 0) → false
app(perfectp, app(s, x)) → app(app(app(app(f, x), app(s, 0)), app(s, x)), app(s, x))
app(app(app(app(f, 0), y), 0), u) → true
app(app(app(app(f, 0), y), app(s, z)), u) → false
app(app(app(app(f, app(s, x)), 0), z), u) → app(app(app(app(f, x), u), app(app(minus, z), app(s, x))), u)
app(app(app(app(f, app(s, x)), app(s, y)), z), u) → app(app(app(if, app(app(le, x), y)), app(app(app(app(f, app(s, x)), app(app(minus, y), x)), z), u)), app(app(app(app(f, x), u), z), u))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(app(filter, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(fun, x)), fun), x), xs)
APP(app(map, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(map, fun), app(app(cons, x), xs)) → APP(app(map, fun), xs)
The remaining pairs can at least be oriented weakly.

APP(app(app(app(filter2, false), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(filter, fun), xs)
Used ordering: Polynomial interpretation [25,35]:

POL(minus) = 0   
POL(f) = 0   
POL(if) = 0   
POL(true) = 0   
POL(s) = 0   
POL(0) = 0   
POL(filter) = 0   
POL(APP(x1, x2)) = (1/4)x_2   
POL(cons) = 0   
POL(map) = 0   
POL(false) = 0   
POL(app(x1, x2)) = 4 + (1/4)x_1 + (4)x_2   
POL(perfectp) = 0   
POL(filter2) = 0   
POL(nil) = 0   
POL(le) = 0   
The value of delta used in the strict ordering is 5/4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(filter2, true), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, false), fun), x), xs) → APP(app(filter, fun), xs)

The TRS R consists of the following rules:

app(perfectp, 0) → false
app(perfectp, app(s, x)) → app(app(app(app(f, x), app(s, 0)), app(s, x)), app(s, x))
app(app(app(app(f, 0), y), 0), u) → true
app(app(app(app(f, 0), y), app(s, z)), u) → false
app(app(app(app(f, app(s, x)), 0), z), u) → app(app(app(app(f, x), u), app(app(minus, z), app(s, x))), u)
app(app(app(app(f, app(s, x)), app(s, y)), z), u) → app(app(app(if, app(app(le, x), y)), app(app(app(app(f, app(s, x)), app(app(minus, y), x)), z), u)), app(app(app(app(f, x), u), z), u))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.